A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload.
نویسندگان
چکیده
Bone is a dynamic tissue which, through the process of bone remodeling in the mature skeleton, renews itself during normal function and adapts to mechanical loads. It is, therefore, important to understand the effect of remodeling on the mechanical function of bone, as well as the effect of the inherent time lag in the remodeling process. In this study, we develop a constitutive model for bone remodeling which includes a number of relevant mechanical and biological processes and use this model to address differences in the remodeling behavior as a volume element of bone is placed in disuse or overload. The remodeling parameters exhibited damped oscillatory behavior as the element was placed in disuse, with the amplitude of the oscillations increasing as the severity of disuse increased. In overload situations, the remodeling parameters exhibited critically sensitive behavior for loads beyond a threshold value. These results bear some correspondence to experimental findings, suggesting that the model may be useful when examining the importance of transient responses for bone in disuse, and for investigating the role fatigue damage removal plays in preventing or causing stress fractures. In addition, the constitutive algorithm is currently being employed in finite element simulations of bone adaptation to predict important features of the internal structure of the normal femur, as well as to study bone diseases and their treatment.
منابع مشابه
An adaptation model for trabecular bone at different mechanical levels
BACKGROUND Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In differe...
متن کاملIntramedullary Pressure Induced by Dynamic Hydraulic Stimulation and its Potential in Attenuation of Bone Loss
INTRODUCTION: Bone fluid flow has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) is suggested to initiate bone fluid flow and influence the osteogenic signals within bone. The potential ImP-induced bone fluid flow then triggers the remodeling process in the skeleton . It has been demonstrated that ImP generated by os...
متن کاملMechanistic-Empirical Analysis of Asphalt Dynamic Modulus for Rehabilitation Projects in Iran
In the Mechanistic–Empirical Pavement Design Guide (MEPDG), dynamic modulus of asphalt mixes is used as one of the input parameters in pavement analysis and design. For in-service pavements, MEPDG method uses a combination of some field and laboratory tests for structural evaluation of asphalt layers in rehabilitation projects. In this study, ten new and rehabilitated in-service asphalt pavemen...
متن کاملTitle: Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength Abbreviated title: The effects of hibernation on bone
Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight bearing activity, and therefore they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during h...
متن کاملMammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength.
Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2001